
Formal verification of cryptographic protocols

David Baelde, Joseph Lallemand
1 July 2025

1

Introduction

▶ Cryptographic protocols are used to secure communications over insecure networks

▶ All kinds of applications
e.g. Web (HTTPS/TLS), Instant messaging (Signal), Wi-Fi (WPA),
Credit card payment (EME), 4G/5G (AKA). . .

▶ Very often they are flawed, leading to attacks

▶ We want to analyse protocols to formally prove the absence of vulnerabilities

2

Example: the Diffie-Hellman key exchange

👿
Alice

🙂
x , gy , gx·y

gx
−−−−−−−−−−−−−−−−−−−−−−−→

gy
←−−−−−−−−−−−−−−−−−−−−−−−
←−− shared secret gx ·y −−→

Bob

😊
y , gx , gx·y

▶ Alice and Bob establish a shared secret gx ·y

▶ Relies on the Diffie-Hellman assumption on the group:

It is hard to compute gx ·y knowing only gx and gy .

3

The Need for Authentication

Charlie

4
“Hey I’m Alice”

gz
−−−−−−−−−−−−−−−−−−−−−−−→

gy
←−−−−−−−−−−−−−−−−−−−−−−−
←−− shared secret gz·y −−→

Bob

😊
“Surely I’m talking to Alice”

▶ That’s the general idea, but it’s not enough

▶ No authentication! Charlie could impersonate Alice.

▶ Bob computes gz·y , which is not secret – Charlie knows it.

4

The Signed Diffie-Hellman key exchange

👿
Alice

🙂
skA, pkB , x , gy , gx·y

gx
−−−−−−−−−−−−−−−−−−−−−−−→

gy , sign(⟨gy ,gx ⟩,skB)←−−−−−−−−−−−−−−−−−−−−−−−
sign(⟨gx ,gy ⟩,skA)−−−−−−−−−−−−−−−−−−−−−−−→

←−− shared secret gx ·y −−→

Bob

😊
skB , pkA, y , gx , gx·y

▶ Alice and Bob sign the two values gx , gy

▶ They authenticate each other, and agree on gx ·y .

▶ For that, signatures need to be unforgeable:

It is hard to forge a signature sign(m, sk) without knowing the key sk.
5

Process notation

We often use a process notation inspired by the π-calculus.

PAlice(skA, pkB) =
new x ;
out(gx);
in(m);
let ⟨Y ′, s⟩ = m in
if verify(s, ⟨Y ′, gx ⟩, pkB) then

out(sign(⟨gx , Y ′⟩, skA)).

PBob(skB, pkA) =
in(X ′);
new y ;
out(⟨gy , sign(⟨gy , X ′⟩, skB)⟩);
in(s);
if verify(s, ⟨X ′, gy ⟩, pkA) then

out(,).

PDH = new skA; new skB;
out(pk(skA)); out(pk(skB));
(PAlice(skA, pk(skB)) | PBob(skB, pk(skA))

6

MITM attack & the actual signed Diffie-Hellman protocol

Alice

🙂
“Hi Charlie!”

gx
−−−−−−−−−−−−−−→

Charlie

4
“Hey I’m Charlie!” “Hey I’m Alice!”

gx
−−−−−−−−−−−−−−→

gy , sign(⟨gy ,gx ⟩,skC)←−−−−−−−−−−−−−− gy , sign(⟨gy ,gx ⟩,skB)←−−−−−−−−−−−−−−
sign(⟨gx ,gy ⟩,skA)−−−−−−−−−−−−−−→ sign(⟨gx ,gy ⟩,skA)−−−−−−−−−−−−−−→

Bob

😊
“Surely that’s Alice!”

▶ In the end, Bob incorrectly believes he is talking to Alice(

▶ Fix: adding the identities of A and B in the signatures.

7

MITM attack & the actual signed Diffie-Hellman protocol

Alice

🙂
“Hi Charlie!”

gx
−−−−−−−−−−−−−−→

Charlie

4
“Hey I’m Charlie!” “Hey I’m Alice!”

gx
−−−−−−−−−−−−−−→

gy , sign(⟨A,gy ,gx ⟩,skC)←−−−−−−−−−−−−−− gy , sign(⟨A,gy ,gx ⟩,skB)←−−−−−−−−−−−−−−
sign(⟨C ,gx ,gy ⟩,skA)−−−−−−−−−−−−−−→ sign(⟨C ,gx ,gy ⟩,skA)❌−−−−−−−−−−−−−−→

Bob

😊
“Wait that’s not Alice!”

▶ In the end, Bob incorrectly believes he is talking to Alice(

▶ Fix: adding the identities of A and B in the signatures.

7

Formal analysis of protocols

▶ Our goal: prove that there are no such attacks.

▶ First, we need to construct formal models of
▶ the protocol we study
▶ the attacker we want to defend against
▶ the properties the protocol should ensure

▶ Then prove that, in that model, no attacker can break the properties +

Just one problem: proofs tend to be difficult and painful and full of errors -

We want mechanised tools to help us with that.

8

Formal analysis of protocols

▶ Our goal: prove that there are no such attacks.

▶ First, we need to construct formal models of
▶ the protocol we study
▶ the attacker we want to defend against
▶ the properties the protocol should ensure

▶ Then prove that, in that model, no attacker can break the properties +

Just one problem: proofs tend to be difficult and painful and full of errors -

We want mechanised tools to help us with that.

8

Security properties

Confidentiality

Confidentiality property
Some data can only be learned by authorised participants,
but remains secret to an attacker.

For instance:

▶ A key that has been exchanged

▶ A password

▶ A message

▶ A movie

9

Authentication

Authentication property
An agent can be sure of the identity of the entity they are talking to.

For instance:

▶ A service provider authenticates a user

▶ A 4G operator authenticates a phone

▶ A web browser authenticates a server

10

Privacy properties (examples)

Anonymity
An attacker cannot find out which agent is executing the protocol.

Unlinkability
An attacker cannot link multiple protocol sessions of the same agent
i.e. find out whether two sessions belong to the same agent.

Vote privacy
An attacker cannot find out which voter voted for which candidate.

11

Models and tools

Attacker models

▶ We need a model of the attacker we want to defend against

▶ Basically: an attacker who controls the network

Alice

Bob

Charlie
Attacker

messages

Network
=😊

🙂

😌

✉

✉

✉

😈

▶ What about the attacker’s computing power?

▶ Two kinds of models: Computational and Symbolic models

12

Attacker models

▶ We need a model of the attacker we want to defend against

▶ Basically: an attacker who controls the network

Alice

Bob

Charlie
Attacker

messages

Network
=😊

🙂

😌

✉

✉

✉

😈

▶ What about the attacker’s computing power?

▶ Two kinds of models: Computational and Symbolic models

12

Attacker models

▶ We need a model of the attacker we want to defend against

▶ Basically: an attacker who controls the network

Alice

Bob

Charlie
Attacker

messages

Network
=😊

🙂

😌

✉

✉

✉

😈

▶ What about the attacker’s computing power?

▶ Two kinds of models: Computational and Symbolic models

12

Symbolic model / Dolev-Yao model

▶ Very abstract representation of everything

▶ Cryptographic primitives are assumed to be perfect

▶ Logical frameworks to model protocols and messages
e.g. state machines, transition systems, rewriting systems, process algebras. . .

▶ Attacker has full control of the network, but limited computation capabilities due to
strong assumptions on cryptography

▶ Very good automation ,, at the cost of somewhat weak guarantees 2

13

Symbolic model: tools

ProVerif
Automated tool for protocol verification.
Protocols modelled as π-calculus processes, incomplete procedure
(does not always conclude)

Tamarin
Automated/interactive tool for protocol verification.
Protocols modelled as multiset rewriting rules, incomplete procedure
(does not always terminate)

Bounded tools: Deepsec, Akiss, . . .
Decision procedures to prove security for bounded numbers of
sessions (always terminate and conclude).

14

Computational Model

Computational model – General ideas

▶ Attacker and protocol participants are (probabilistic) Turing machines,
run in polynomial time w.r.t. the size of keys used

▶ Precise assumptions on cryptographic primitives, expressed as cryptographic games
▶ e.g. IND-CCA, EUF-CMA

▶ Proofs by reduction on the games

▶ Precise, realistic , but very hard to automate proofs 2

15

Computational model – Formal analysis tools

CryptoVerif
Automated procedure to perform cryptographic game
transformations.

EasyCrypt
Proof assistant to reason about probabilistic programs,
More geared towards proving cryptographic primitives.

Squirrel "1
Proof assistant to reason about protocols with a more abstract view,
It’s amazing −→ more on that very soon.

16

Computational model – Security parameter

▶ Study the probability of an adversary breaking security

▶ Everything is parametrised by the security parameter η

i.e. the size of keys and other randomly sampled values (nonces)

▶ The adversary is a Probabilistic Polynomial-time Turing Machine (PPTM) w.r.t. η
▶ Polynomial time: discard brute force attacks
▶ Probabilistic: could always guess keys at random, with probability 2−η

▶ Security can only hold up to negligible probability

A function f : N 7→ R is negligible, written f (n) ∈ negl(n), if

∀k. ∃n0. ∀n ≥ n0. f (n) ≤ n−k

17

Computational model – Security parameter

▶ Study the probability of an adversary breaking security

▶ Everything is parametrised by the security parameter η

i.e. the size of keys and other randomly sampled values (nonces)

▶ The adversary is a Probabilistic Polynomial-time Turing Machine (PPTM) w.r.t. η
▶ Polynomial time: discard brute force attacks
▶ Probabilistic: could always guess keys at random, with probability 2−η

▶ Security can only hold up to negligible probability

A function f : N 7→ R is negligible, written f (n) ∈ negl(n), if

∀k. ∃n0. ∀n ≥ n0. f (n) ≤ n−k

17

Computational model – Security parameter

▶ Study the probability of an adversary breaking security

▶ Everything is parametrised by the security parameter η

i.e. the size of keys and other randomly sampled values (nonces)

▶ The adversary is a Probabilistic Polynomial-time Turing Machine (PPTM) w.r.t. η
▶ Polynomial time: discard brute force attacks
▶ Probabilistic: could always guess keys at random, with probability 2−η

▶ Security can only hold up to negligible probability

A function f : N 7→ R is negligible, written f (n) ∈ negl(n), if

∀k. ∃n0. ∀n ≥ n0. f (n) ≤ n−k

17

Computational model – Security parameter

▶ Study the probability of an adversary breaking security

▶ Everything is parametrised by the security parameter η

i.e. the size of keys and other randomly sampled values (nonces)

▶ The adversary is a Probabilistic Polynomial-time Turing Machine (PPTM) w.r.t. η
▶ Polynomial time: discard brute force attacks
▶ Probabilistic: could always guess keys at random, with probability 2−η

▶ Security can only hold up to negligible probability

A function f : N 7→ R is negligible, written f (n) ∈ negl(n), if

∀k. ∃n0. ∀n ≥ n0. f (n) ≤ n−k

17

Cryptographic assumptions

▶ Cryptographic primitives are also poly time algorithms, may be randomised

▶ The security of a protocol relies on the security of primitives

▶ Assumptions (at least for us:
▶ Correctness assumptions, e.g. verify(sign(m, sk), m, pk(sk)) = ⊤.
▶ Security assumptions, formalised as cryptographic games

▶ A game is an experiment where an adversary tries to
break the primitive in a specific way.
We assume he only has a negligible advantage (≈ probability of success)

18

Computational Diffie-Hellman (CDH) assumption

▶ “It is hard to compute gx ·y from gx , gy ”

▶ Assume an algorithm genDH, that produces a
cyclic group G , with a generator g .

▶ Advantage:
AdvCDH

A (η) = P
[
ExpCDH

A (η) = 1
]

▶ The CDH assumption is that for any PPTM A,
AdvCDH

A (η) ∈ negl(η)

ExpCDH
A (η)

G , g ← gen(1η)
x ←$ J0, |G | − 1K

y ←$ J0, |G | − 1K

z ← A(1η, G , g , gx , gy)
return (z = gx ·y)

19

Computational Diffie-Hellman (CDH) assumption

▶ “It is hard to compute gx ·y from gx , gy ”

▶ Assume an algorithm genDH, that produces a
cyclic group G , with a generator g .

▶ Advantage:
AdvCDH

A (η) = P
[
ExpCDH

A (η) = 1
]

▶ The CDH assumption is that for any PPTM A,
AdvCDH

A (η) ∈ negl(η)

ExpCDH
A (η)

G , g ← gen(1η)
x ←$ J0, |G | − 1K

y ←$ J0, |G | − 1K

z ← A(1η, G , g , gx , gy)
return (z = gx ·y)

19

Computational Diffie-Hellman (CDH) assumption

▶ “It is hard to compute gx ·y from gx , gy ”

▶ Assume an algorithm genDH, that produces a
cyclic group G , with a generator g .

▶ Advantage:
AdvCDH

A (η) = P
[
ExpCDH

A (η) = 1
]

▶ The CDH assumption is that for any PPTM A,
AdvCDH

A (η) ∈ negl(η)

ExpCDH
A (η)

G , g ← gen(1η)
x ←$ J0, |G | − 1K

y ←$ J0, |G | − 1K

z ← A(1η, G , g , gx , gy)
return (z = gx ·y)

19

Computational Diffie-Hellman (CDH) assumption

▶ “It is hard to compute gx ·y from gx , gy ”

▶ Assume an algorithm genDH, that produces a
cyclic group G , with a generator g .

▶ Advantage:
AdvCDH

A (η) = P
[
ExpCDH

A (η) = 1
]

▶ The CDH assumption is that for any PPTM A,
AdvCDH

A (η) ∈ negl(η)

ExpCDH
A (η)

G , g ← gen(1η)
x ←$ J0, |G | − 1K

y ←$ J0, |G | − 1K

z ← A(1η, G , g , gx , gy)
return (z = gx ·y)

19

Existential Unforgeability under Chosen Message Attacks (EUF-CMA)

ExpEUF−CMA
A (η)

pk, sk ← gensign(1η)
L← []
m0, s0 ← AOsign(1η, pk)
if verify(s0, m0, pk) ∧ m0 /∈ L
then return 1
else return 0

Osign(m)
s ← sign(m, sk)
L← m :: L
return s

▶ “Signatures cannot be forged without knowing sk”

▶ For a signature scheme (gensign, sign, verify)

▶ The adversary has access to a signing oracle Osign

▶ Advantage:
AdvEUF−CMA

A (η) = P
[
ExpEUF−CMA

A (η) = 1
]

▶ The EUF-CMA assumption is that for any PPTM A,
AdvEUF−CMA

A (η) ∈ negl(η)

20

Existential Unforgeability under Chosen Message Attacks (EUF-CMA)

ExpEUF−CMA
A (η)

pk, sk ← gensign(1η)
L← []
m0, s0 ← AOsign(1η, pk)
if verify(s0, m0, pk) ∧ m0 /∈ L
then return 1
else return 0

Osign(m)
s ← sign(m, sk)
L← m :: L
return s

▶ “Signatures cannot be forged without knowing sk”

▶ For a signature scheme (gensign, sign, verify)

▶ The adversary has access to a signing oracle Osign

▶ Advantage:
AdvEUF−CMA

A (η) = P
[
ExpEUF−CMA

A (η) = 1
]

▶ The EUF-CMA assumption is that for any PPTM A,
AdvEUF−CMA

A (η) ∈ negl(η)

20

Existential Unforgeability under Chosen Message Attacks (EUF-CMA)

ExpEUF−CMA
A (η)

pk, sk ← gensign(1η)
L← []
m0, s0 ← AOsign(1η, pk)
if verify(s0, m0, pk) ∧ m0 /∈ L
then return 1
else return 0

Osign(m)
s ← sign(m, sk)
L← m :: L
return s

▶ “Signatures cannot be forged without knowing sk”

▶ For a signature scheme (gensign, sign, verify)

▶ The adversary has access to a signing oracle Osign

▶ Advantage:
AdvEUF−CMA

A (η) = P
[
ExpEUF−CMA

A (η) = 1
]

▶ The EUF-CMA assumption is that for any PPTM A,
AdvEUF−CMA

A (η) ∈ negl(η)

20

Existential Unforgeability under Chosen Message Attacks (EUF-CMA)

ExpEUF−CMA
A (η)

pk, sk ← gensign(1η)
L← []
m0, s0 ← AOsign(1η, pk)
if verify(s0, m0, pk) ∧ m0 /∈ L
then return 1
else return 0

Osign(m)
s ← sign(m, sk)
L← m :: L
return s

▶ “Signatures cannot be forged without knowing sk”

▶ For a signature scheme (gensign, sign, verify)

▶ The adversary has access to a signing oracle Osign

▶ Advantage:
AdvEUF−CMA

A (η) = P
[
ExpEUF−CMA

A (η) = 1
]

▶ The EUF-CMA assumption is that for any PPTM A,
AdvEUF−CMA

A (η) ∈ negl(η)

20

Indistinguishability under Chosen Plaintext Attacks (IND-CPA)

▶ “Ciphertexts hide their contents”

▶ For a symmetric encryption scheme (genenc, enc, dec)

▶ The adversary is given an encryption oracle Oenc

▶ An indistinguishability game

▶ Advantage:
AdvIND−CPA

A (η) =∣∣∣P [
ExpIND−CPA,0

A (η) = 1
]
− P

[
ExpIND−CPA,1

A (η) = 1
]∣∣∣

▶ The IND-CPA assumption is that for any PPTM A,
AdvIND−CPA

A (η) ∈ negl(η)

ExpIND−CPA,β
A (η)

k ← genenc(1η)
m0, m1 ← AOenc(1η)
cβ ← enc(mβ , pk)
β′ ← A(1η, cβ)
return β′

Oenc(m)
return enc(m, k)

21

Indistinguishability under Chosen Plaintext Attacks (IND-CPA)

▶ “Ciphertexts hide their contents”

▶ For a symmetric encryption scheme (genenc, enc, dec)

▶ The adversary is given an encryption oracle Oenc

▶ An indistinguishability game

▶ Advantage:
AdvIND−CPA

A (η) =∣∣∣P [
ExpIND−CPA,0

A (η) = 1
]
− P

[
ExpIND−CPA,1

A (η) = 1
]∣∣∣

▶ The IND-CPA assumption is that for any PPTM A,
AdvIND−CPA

A (η) ∈ negl(η)

ExpIND−CPA,β
A (η)

k ← genenc(1η)
m0, m1 ← AOenc(1η)
cβ ← enc(mβ , pk)
β′ ← A(1η, cβ)
return β′

Oenc(m)
return enc(m, k)

21

Indistinguishability under Chosen Plaintext Attacks (IND-CPA)

▶ “Ciphertexts hide their contents”

▶ For a symmetric encryption scheme (genenc, enc, dec)

▶ The adversary is given an encryption oracle Oenc

▶ An indistinguishability game

▶ Advantage:
AdvIND−CPA

A (η) =∣∣∣P [
ExpIND−CPA,0

A (η) = 1
]
− P

[
ExpIND−CPA,1

A (η) = 1
]∣∣∣

▶ The IND-CPA assumption is that for any PPTM A,
AdvIND−CPA

A (η) ∈ negl(η)

ExpIND−CPA,β
A (η)

k ← genenc(1η)
m0, m1 ← AOenc(1η)
cβ ← enc(mβ , pk)
β′ ← A(1η, cβ)
return β′

Oenc(m)
return enc(m, k)

21

Indistinguishability under Chosen Plaintext Attacks (IND-CPA)

▶ “Ciphertexts hide their contents”

▶ For a symmetric encryption scheme (genenc, enc, dec)

▶ The adversary is given an encryption oracle Oenc

▶ An indistinguishability game

▶ Advantage:
AdvIND−CPA

A (η) =∣∣∣P [
ExpIND−CPA,0

A (η) = 1
]
− P

[
ExpIND−CPA,1

A (η) = 1
]∣∣∣

▶ The IND-CPA assumption is that for any PPTM A,
AdvIND−CPA

A (η) ∈ negl(η)

ExpIND−CPA,β
A (η)

k ← genenc(1η)
m0, m1 ← AOenc(1η)
cβ ← enc(mβ , pk)
β′ ← A(1η, cβ)
return β′

Oenc(m)
return enc(m, k)

21

Security of protocols as cryptographic games

▶ Games are also used to specify security properties of protocols

▶ As for primitives, an adversary tries to break the security of the protocol
in a specific way, e.g. learn a secret, . . .

▶ The adversary has access to a set of oracles, to interact with the protocol

22

The Signed Diffie-Hellman protocol as a set of oracles

Alice

🙂
gx

−−−−−−−−−−−−−−−−−−−−−−−→
gy , sign(⟨gy ,gx ⟩,skB)←−−−−−−−−−−−−−−−−−−−−−−−

sign(⟨gx ,gy ⟩,skA)−−−−−−−−−−−−−−−−−−−−−−−→

Bob

😊 =⇒ O = {Oalice1,Oalice2,Obob1,Obob2}

Oalice1()
x ←$ J0, |G | − 1K

return gx

Oalice2(m, s)
Y ′ ← m
if verify(s, ⟨A, Y ′, gx ⟩, pkB) then

return sign(⟨B, gx , Y ′⟩, skA)

Obob1(m)
X ← m
y ←$ J0, |G | − 1K

return ⟨gy , sign(⟨A, gy , X ′⟩, skB)⟩

Obob2(s)
if verify(s, ⟨B, X ′, gy ⟩, pkA) then

ok ← 1
23

Secrecy of the Diffie-Hellman exchange

Expsecrecy
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (z = gx ·y)

▶ “gx ·y remains secret”

▶ The adversary is only allowed one call
to each oracle: models a single session

▶ Advantage:
Advsecrecy

A (η) = P
[
Expsecrecy

A (η) = 1
]

▶ gx ·y is secret if for any PPTM A,
Advsecrecy

A (η) ∈ negl(η)

▶ We could also (more interestingly)
ask for the secrecy of e.g. X ′y or Y ′x

24

Secrecy of the Diffie-Hellman exchange

Expsecrecy
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (z = gx ·y)

▶ “gx ·y remains secret”

▶ The adversary is only allowed one call
to each oracle: models a single session

▶ Advantage:
Advsecrecy

A (η) = P
[
Expsecrecy

A (η) = 1
]

▶ gx ·y is secret if for any PPTM A,
Advsecrecy

A (η) ∈ negl(η)

▶ We could also (more interestingly)
ask for the secrecy of e.g. X ′y or Y ′x

24

Secrecy of the Diffie-Hellman exchange

Expsecrecy
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (z = gx ·y)

▶ “gx ·y remains secret”

▶ The adversary is only allowed one call
to each oracle: models a single session

▶ Advantage:
Advsecrecy

A (η) = P
[
Expsecrecy

A (η) = 1
]

▶ gx ·y is secret if for any PPTM A,
Advsecrecy

A (η) ∈ negl(η)

▶ We could also (more interestingly)
ask for the secrecy of e.g. X ′y or Y ′x

24

Secrecy of the Diffie-Hellman exchange

Expsecrecy
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (z = gx ·y)

▶ “gx ·y remains secret”

▶ The adversary is only allowed one call
to each oracle: models a single session

▶ Advantage:
Advsecrecy

A (η) = P
[
Expsecrecy

A (η) = 1
]

▶ gx ·y is secret if for any PPTM A,
Advsecrecy

A (η) ∈ negl(η)

▶ We could also (more interestingly)
ask for the secrecy of e.g. X ′y or Y ′x

24

Authentication

Expauth
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (ok = 1 ∧ (X ′ ̸= gx ∨ Y ′ ̸= gy))

▶ “When Bob finishes the exchange,
Alice and Bob agree on gx and gy ”

▶ Advantage:
Advauth

A (η) = P
[
Expauth

A (η) = 1
]

▶ B authenticates A if for any PPTM A,
Advauth

A (η) ∈ negl(η)

25

Authentication

Expauth
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (ok = 1 ∧ (X ′ ̸= gx ∨ Y ′ ̸= gy))

▶ “When Bob finishes the exchange,
Alice and Bob agree on gx and gy ”

▶ Advantage:
Advauth

A (η) = P
[
Expauth

A (η) = 1
]

▶ B authenticates A if for any PPTM A,
Advauth

A (η) ∈ negl(η)

25

Authentication

Expauth
A (η)

G , g ← genDH(1η)
pkA, skA ← gensign(1η)
pkB , skB ← gensign(1η)
x , y , X ′, Y ′, ok ← ⊥
z ← AO(1η, G , g , pkA, pkB)
return (ok = 1 ∧ (X ′ ̸= gx ∨ Y ′ ̸= gy))

▶ “When Bob finishes the exchange,
Alice and Bob agree on gx and gy ”

▶ Advantage:
Advauth

A (η) = P
[
Expauth

A (η) = 1
]

▶ B authenticates A if for any PPTM A,
Advauth

A (η) ∈ negl(η)

25

Anonymity

Expanon,β
A (η)

G , g ← genDH(1η)
pk0

A, sk0
A ← gensign(1η)

pk1
A, sk1

A ← gensign(1η)
pkB , skB ← gensign(1η, B)
x , y , X ′, Y ′, ok ← ⊥

β′ ← AOβ

(1η, G , g , pk0
A, pk1

A, pkB)
return β′

Oβ is {Oalice
β,Obob}

▶ “No one can learn who is running the protocol”

▶ An example of a privacy property

▶ Written as an indistinguishability game:
distinguish whether A0 or A1 runs the protocol

▶ Advantage:
Advanon

A (η) =∣∣∣P [
Expanon,0

A (η) = 1
]
− P

[
Expanon,1

A (η) = 1
]∣∣∣

▶ Anonymity holds if for any PPTM A,
Advanon

A (η) ∈ negl(η)

▶ Though of course it does not hold here.

26

Anonymity

Expanon,β
A (η)

G , g ← genDH(1η)
pk0

A, sk0
A ← gensign(1η)

pk1
A, sk1

A ← gensign(1η)
pkB , skB ← gensign(1η, B)
x , y , X ′, Y ′, ok ← ⊥

β′ ← AOβ

(1η, G , g , pk0
A, pk1

A, pkB)
return β′

Oβ is {Oalice
β,Obob}

▶ “No one can learn who is running the protocol”

▶ An example of a privacy property

▶ Written as an indistinguishability game:
distinguish whether A0 or A1 runs the protocol

▶ Advantage:
Advanon

A (η) =∣∣∣P [
Expanon,0

A (η) = 1
]
− P

[
Expanon,1

A (η) = 1
]∣∣∣

▶ Anonymity holds if for any PPTM A,
Advanon

A (η) ∈ negl(η)

▶ Though of course it does not hold here.

26

Anonymity

Expanon,β
A (η)

G , g ← genDH(1η)
pk0

A, sk0
A ← gensign(1η)

pk1
A, sk1

A ← gensign(1η)
pkB , skB ← gensign(1η, B)
x , y , X ′, Y ′, ok ← ⊥

β′ ← AOβ

(1η, G , g , pk0
A, pk1

A, pkB)
return β′

Oβ is {Oalice
β,Obob}

▶ “No one can learn who is running the protocol”

▶ An example of a privacy property

▶ Written as an indistinguishability game:
distinguish whether A0 or A1 runs the protocol

▶ Advantage:
Advanon

A (η) =∣∣∣P [
Expanon,0

A (η) = 1
]
− P

[
Expanon,1

A (η) = 1
]∣∣∣

▶ Anonymity holds if for any PPTM A,
Advanon

A (η) ∈ negl(η)

▶ Though of course it does not hold here.

26

Anonymity

Expanon,β
A (η)

G , g ← genDH(1η)
pk0

A, sk0
A ← gensign(1η)

pk1
A, sk1

A ← gensign(1η)
pkB , skB ← gensign(1η, B)
x , y , X ′, Y ′, ok ← ⊥

β′ ← AOβ

(1η, G , g , pk0
A, pk1

A, pkB)
return β′

Oβ is {Oalice
β,Obob}

▶ “No one can learn who is running the protocol”

▶ An example of a privacy property

▶ Written as an indistinguishability game:
distinguish whether A0 or A1 runs the protocol

▶ Advantage:
Advanon

A (η) =∣∣∣P [
Expanon,0

A (η) = 1
]
− P

[
Expanon,1

A (η) = 1
]∣∣∣

▶ Anonymity holds if for any PPTM A,
Advanon

A (η) ∈ negl(η)

▶ Though of course it does not hold here.
26

Proofs of security
Assumption
ExpCDH

A (η)
G , g ← gen(1η)
x ←$ J0, |G | − 1K

y ←$ J0, |G | − 1K

z ← A(1η, G , g , gx , gy)
return (z = gx ·y)

Goal
Expsecrecy

A (η)
G , g ← genDH(1η)
pkA, skA ← gensign(1η, A)
pkB , skB ← gensign(1η, B)
z ← AO(1η, G , g , pkA, pkB)
return (z = gx ·y)

▶ Model the protocol, the properties, and the assumptions

▶ Proof by reduction
e.g. “from A s.t. Advsecrecy

A /∈ negl, we construct B s.t. AdvCDH
B /∈ negl”.

▶ Need to make sure B also runs in polynomial time
27

Questions?

%

28

	Security properties
	Models and tools
	Computational Model

