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What is Squirrel?

A proof assistant for
verifying cryptographic protocols,
based on the CCSA approach.

[A Bana & Comon. A Computationally Complete Symbolic Attacker for
Equivalence Properties. CCS 2014.

Developped by a group of 7 permanent researchers and 4 PhD students
in Rennes, Paris and Nancy.
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This talk

An informal introduction to the Squirrel system:
e Preparing the ground for hands-on learning!
e How to formally model protocols and reason about their properties.

e Limited to trace properties: no equivalences.
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This talk

An informal introduction to the Squirrel system:
e Preparing the ground for hands-on learning!
e How to formally model protocols and reason about their properties.

e Limited to trace properties: no equivalences.

I'm not going to talk about the theory, open problems, related works. . .
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Demo

Proving basic logical facts in Squirrel:

@ 0-logic.sp @

Squirrel uses standard proof assistant Ul, and is inspired by Coq.
We prove formulas by organizing them in sequents:

O1y s O reads as (\; i) = ¥

The concrete notation is as follows, with identifiers for hypotheses:

H_1 : phi_1
Hon : phi_n
psi
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Demo

Proving basic logical facts in Squirrel:

@ 0-logic.sp @

Squirrel uses standard proof assistant Ul, and is inspired by Coq.
We prove formulas by organizing them in sequents:

O1y s O reads as (\; i) = ¥

The concrete notation is as follows, with identifiers for hypotheses:

H_1 : phi_1
Hon : phi_n
psi

However the Squirrel logic is not as standard as it seems.
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Outline

@ Reasoning about messages
@ Messages as terms
@ Modelling an interaction with the attacker
o Cryptographic reasoning
@ Further notes
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Modelling messages

Crypto is all about probabilistic, polynomial-time (PPTIME) computations.
Reasoning about these directly is intimidating.

Key idea #1

Let’s use logical terms to denote PPTIME bitstring computations. J
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Modelling messages

Crypto is all about probabilistic, polynomial-time (PPTIME) computations.
Reasoning about these directly is intimidating.

Key idea #1

Let’s use logical terms to denote PPTIME bitstring computations.

Honest function symbols are interpreted as deterministic computations,
used to represent primitives, public constants, etc.

Notation: f(m), g(m, n), ok...

We assume builtins with standard semantics: equals, ifthenelse, etc.

Example

e if u= v then (if v = u then t; else to) else t3 and
if u= v then t else t3 always compute the same thing.

e g* might denote a DH public key associated to private key x.
To model x, we need probabilistic symbols.
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Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ~ 7.
Notation:

Names are used to model private keys, DH exponents, nonces, etc.

Example

e When m and n are distinct name symbols,
there is a negligible probability that

and n yield the same result.

7/21



Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ~ 7.
Notation:

Names are used to model private keys, DH exponents, nonces, etc.

Example

e When m and n are distinct name symbols,

there is a negligible probability that m and n yield the same result.

e There is a negligible probability that t = n returns true,
provided that t represents a computation that cannot use
~~ This is guaranteed if t contains neither n nor variables.
Variables x, y, z... represent arbitrary probabilistic computations.
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Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ~ 7.
Notation: n, r, k...

Names are used to model private keys, DH exponents, nonces, etc.

Key idea #2

A formula is valid when it is true with overwhelming probability.

Example

e The formula n # m is valid.

e The formula t # n is valid for any t containing neither n nor variables.
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Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ~ 7.
Notation: n,

Names are used to model private keys, DH exponents, nonces, etc.

Key idea #2

A formula is valid when it is true with overwhelming probability.

Example
e The formula n # m is valid.
e The formula t # n is valid for any t containing neither n nor variables.
e However, the formula (¥x. x # n) is not valid.

Demo: 1-names.sp with the fresh tactic (also for indexed names)
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Modelling messages: adversarial function symbols

Key idea #3 J

Use unspecified function symbols to model attacker computations.

Adversarial function symbols represent PPTIME computations
that cannot access honest randomness (names).
Notation: att(my, ..., mg).

Example (Modelling a trace of signed DH protocol)

©w - 9 coouty = g

W — @ : inp = att(out;)

¥ « o outa = (g, sign({g’,inz),sk@))
w - 9 ing = att’(outy,outy)
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Cryptographic reasoning: Diffie-Hellman

Key idea #4

Reformulate cryptographic assumptions as axiom schemes
by viewing terms as attacker computations.

Assume function symbols for a generator g and exponentiation,
interpreted in a cyclic group for which we assume CDH.

Example

e Can we have g° = g"*"?
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Cryptographic reasoning: Diffie-Hellman

Key idea #4

Reformulate cryptographic assumptions as axiom schemes
by viewing terms as attacker computations.

Assume function symbols for a generator g and exponentiation,
interpreted in a cyclic group for which we assume CDH.

Example
e Can we have g° = g°*"? No.

e Can we have g"*” = att(g”,g")? No.

e The formula g"*" # t is valid whenever. ..
t contains no variable, only contains a as g”, only contains

as g’.

Demo: 2-cdh.sp with the cdh tactic (also for indexed secrets)
Demo: 2.5-cdh-signed-dh.sp
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Cryptographic reasoning: signatures
Assume function symbols representing an EUF-CMA signature:
sign(m, k) : message verify(m, s, pub(k)) : bool

verify(m, sign(m, k), pub(k)) = true
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Cryptographic reasoning: signatures
Assume function symbols representing an EUF-CMA signature:
sign(m, k) : verify(m, s, pub(k)) :
verify(m, sign(m, k), pub(k)) = true

The following axiom scheme is valid:

verify(m, s, pub(k)) = \/ m=m
meS
where S = { m’ | sign(m’, k) occurs in m, s}

and m, s are closed terms only containing k as pub(k) and sign(_, k).
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Cryptographic reasoning: signatures
Assume function symbols representing an EUF-CMA signature:
sign(m, k) : verify(m, s, pub(k)) :
verify(m, sign(m, k), pub(k)) = true

The following axiom scheme is valid:

verify(m, s, pub(k)) = \/ m=m
m'eS
where S = { m’ | sign(m’, k) occurs in m, s}
and m, s are closed terms only containing k as pub(k) and sign(_, k).

In practice, the tactic euf H allows to reason on H : verify(m,s,pk)
to deduce the above axioms and more.

Demo: 2.5-cdh-signed-dh.sp

10/21



Cryptographic reasoning: hash functions

Assume h models a keyed hash functions.
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Cryptographic reasoning: hash functions
Assume h models a keyed hash functions.

If h is EUF-CMA secure, we have
u=nh(v, k)= \/s:v
seS

where S = { s | h(s, k) occurs in u, v}
and u, v are variable-free terms where k only occurs as h(_, k).

If h is collision-resistant, we have

h(u, k) =h(v,k) = u=v

when u, v are variable-free terms where k only occurs as h(_, k).
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Cryptographic reasoning: hash functions

Assume h models a keyed hash functions.

If h is EUF-CMA secure, we have

u=h(v, ):>\/s:v
se$S

where S = { s | h(s, k) occurs in u, v}
and u, v are variable-free terms where k only occurs as h(_, k).

If h is collision-resistant, we have
h(u, k) =h(v,k) = u=v
when u, v are variable-free terms where k only occurs as h(_, k).

Existential unforgeability implies collision-resistance,
but the collision tactic is more convenient than euf.
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Further notes

What's in the full local logic?

e Equalities, quantification over indices, boolean connectives, etc.
Can be seen as PPTIME computation because index is finite.
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Further notes
What's in the full local logic? |

e With quantifications on , formulas are not PPTIME anymore,
but we can refine our axioms and tactics to carry over.

e Function types, polymorphism, higher-order quantification. . .
for modularity/abstraction in proofs. Recursive definitions (next).

Stanislas Riou (PhD student) works on automating the local logic using
SMT solvers.

What's beyond the local logic? |
The global logic is a classical logic over random vars with predicates for:

e overwhelming truth of a local formula,

e indistinguishability between sequences of messages,

e exact truth of a local formula, (non/bi)-deducibility, etc.

Cryptographic tactics are slowly being subsumed by bi-deduction and
cryptographic games thanks to the PhD work of Justine Sauvage.
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Outline

© Reasoning about protocols
@ Systems of actions
@ Protocol semantics along a trace
@ Reasoning with recursive definitions
@ Further notes
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Systems of actions

A protocol is modelled by a set of actions.
Each action is identified by an indexed action symbol A(/).

=

The semantics of action A(i) is given by:
e a local formula describing the executability condition;
e a term describing its output.

Both can use a special term input@A(f).

Example (Signed DH with several sessions)
A(7) = first action of Alice for session i
o Executes if true.

e Outputs g“(/).
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Each action is identified by an indexed action symbol A(/).
The semantics of action A(/) is given by:
e a local formula describing the executability condition;
e a term describing its output.

Both can use a special term input@A(f).

Example (Signed DH with several sessions)
B(j) = first action of Bob for session j:

e Executes if true.

o Outputs ( g'0), sign((g'0),input@B())), sk®) ).
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Systems of actions

A protocol is modelled by a set of actions.
Each action is identified by an indexed action symbol A(/).

=

The semantics of action A(i) is given by:
e a local formula describing the executability condition;
e a term describing its output.

Both can use a special term input@A(f).

Example (Signed DH with several sessions)

A1(i) = second action of Alice for session i, upon success:
o Executes if

verify ( (fst(input@As(7)), g""), snd(input@Ay(/)), pub(sk@)).
e Outputs sign((g“), fst(input@A;(i))), ske).
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=

The semantics of action A(i) is given by:
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Systems of actions

A protocol is modelled by a set of actions.
Each action is identified by an indexed action symbol A(/).

=

The semantics of action A(i) is given by:
e a local formula describing the executability condition;
e a term describing its output.

=

Both can use a special term input@A(/).

Example (Signed DH with several sessions)
Ax(i) = second action of Alice for session i, upon failure:
o Executes if
—werify ( (fst(input@As(i)), g (1), snd(input@Ay(i)), pub(ske) ).
e Qutputs .

Demo: 3.5-signed-dh-many.sp (actions compiled from m-calculus
process)
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Traces of actions

A trace is a non-repeating sequence of actions
subject to protocol-specific conditions:

e A(1).B(7).A(1) is not a trace.
e A(1).B(7).A1(1) is a trace.
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Traces of actions

A trace is a non-repeating sequence of actions
subject to protocol-specific conditions:

e A(1).B(7).A(1) is not a trace.
A1(1) is a trace.
1(3) is not a trace.

(
2(1) is a trace.
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Traces of actions

A trace is a non-repeating sequence of actions
subject to protocol-specific conditions:

e A(1).B(7).A(1) is not a trace.

e A(1).B(7).A1(1) is a trace.

o A(1).B(7).A1(3) is not a trace.

e A(1).B(7).A2(1) is a trace.

e A(1).B(7).A1(1).A2(1) is not a trace.
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Traces of actions

A trace is a non-repeating sequence of actions
subject to protocol-specific conditions:

e A(1).B(7).A(1) is not a trace.

e A(1).B(7).A1(1) is a trace.

o A(1).B(7).A1(3) is not a trace.

e A(1).B(7).A2(1) is a trace.

e A(1).B(7).A1(1).A2(1) is not a trace.
e B(7).A(1).A1(1) is a trace.

A trace just indicates a tentative schedule for actions.
Depending on the interpretation of primitives and attackers,
it will execute with a certain probability.
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Modelling traces in the logic

We use terms of sort

e happens(7) means that 7 is part of the trace
e init is the first timestamp that happens

e < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.
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Modelling traces in the logic

We use terms of sort timestamp:
e happens(7) means that 7 is part of the trace
e init is the first timestamp that happens

e < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Injectivity (part of auto tactic)
For distinct actions A,B € A:

o Vi. V. happens(A(i_))/\happens(B(j:)) = A(f);é B(Ji) }
e Vi. V. happens(A(1)) A happens(A(GY) A T# J = A7) # A())
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Modelling traces in the logic

We use terms of sort timestamp:
e happens(7) means that 7 is part of the trace
e init is the first timestamp that happens

e < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Order (part of auto tactic)
e happens(7) A happens(7) & 7 <7 V7 <71
e happens(pred(7)) = pred(7) < T
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Modelling traces in the logic

We use terms of sort timestamp:
e happens(7) means that 7 is part of the trace
e init is the first timestamp that happens

e < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Case analysis and induction (case and induction)

o V7. happens(7) = 7 =init V \/ac4 3. = A()
o (V1. (V. 7 <7= ¢[r]) = d[r]) = Vr. ¢[7]
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Modelling traces in the logic

We use terms of sort timestamp:
e happens(7) means that 7 is part of the trace
e init is the first timestamp that happens

e < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Signed DH specific axioms (used by smt but not auto)
e Vi. happens(A1(i)) = A(i) < A1(i) (dependency)
e Vi. —(happens(A1(i)) A happens(Aa(i))) (conflict)
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Macros

Given a trace we define! recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@r = (output of action 7) if init <7

cond@r = (condition of action ) if init <7

!Missing cases are not important.
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Macros

Given a trace we define! recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@r = (output of action 7) if init <7
cond@r = (condition of action ) if init <7
exec@init = true

exec@r = exec@pred(7) A cond@r if init <7

!Missing cases are not important.
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Macros

Given a trace we define! recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@r = (output of action 7) if init <7
cond@r = (condition of action ) if init <7
exec@init = true
exec@r = exec@pred(7) A cond@r if init <7
frame@init = empty
exec@r = (frame@pred(7),

( exec@r,

if exec@r then output©r else empty )) if init <7

!Missing cases are not important.
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Macros

Given a trace we define! recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@r = (output of action 7)
cond@r = (condition of action )
exec@init = true
exec@r = exec@pred(7) A cond@r
frame@init = empty
exec@r = (frame@pred(7),

( exec@r,

if exec@ then output@r else empty ))
input@r = att(frame@r)

!Missing cases are not important.

if init <7
if init <7

if init <7

if init <7
if init <7
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Security properties for all traces

Additional macros reflect let-definitions used in processes.
For example Y/@A1(/) is the value of Y’ in that action.

Example (Agreement for ()

Vi. cond®A;(i) = 3j. B(j) < A1(i) A
X@A(i) = X'@B(j) A
Y'@A1(i) = YOB())

Demo: 3.5-signed-dh-many.sp
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Reasoning with recursive definitions

Constraining occurrences becomes more complex with macros.

Example (Freshness without macros nor indices)

t # n is valid for any variable-free term t that does not contain n J
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Reasoning with recursive definitions

Constraining occurrences becomes more complex with macros.

Example (Freshness without macros nor indices)

t # n is valid for any variable-free term t that does not contain n

Example (Freshness without macros)

t=n(i) = vn(f)et i=J valid for any term t without message variables

v

Example (Freshness with macros)

t= n(;) = Vn(j)ét 7: J7 Vv VIW(,IT)GA(E) Jk. A(k) < TN :./7
valid for any term t without message variables,

-,

where n(j) € A(k) denotes occurrences in output or condition of A
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Reasoning with recursive definitions

Constraining occurrences becomes more complex with macros.

Example (Freshness without macros nor indices)

t # n is valid for any variable-free term t that does not contain

Example (Freshness without macros)

= (/_5 =V (et i'=Jj valid for any term t without message variables

.

Example (Freshness with macros)

t=n(i) = V ()et i=j v V (YeA®) K- A)<STAT=]
valid for any term t without message variables,

-,

where n(j) € A(k) denotes occurrences in output or condition of A

Further refinements are possible and even necessary in practice.
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Further notes

Protocols with mutable state

Protocols with mutable memory cells are supported (using cell@r macros).
The translation from processes to systems of actions, and its soundness,
is recent work notably involving Clément Herouard.
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Further notes

Protocols with mutable state

Protocols with mutable memory cells are supported (using cell@r macros).
The translation from processes to systems of actions, and its soundness,

is recent work notably involving Clément Herouard.

Polynomial security
A subtle discrepancy between security notions:
e We prove that, for each trace T, there is no attacker along T.

e We would like to prove that there is no attacker,
choosing the trace depending on 7 and previous messages.

This is the topic of Théo Vigneron's ongoing PhD thesis.
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What's next?

Hands on experience in practical sessions!

Learn some more on our website, with more tutorials and papers:

https://squirrel-prover.github.io/
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