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What is Squirrel?

A proof assistant for
verifying cryptographic protocols,
based on the CCSA approach.

Bana & Comon. A Computationally Complete Symbolic Attacker for
Equivalence Properties. CCS 2014.

Developped by a group of 7 permanent researchers and 4 PhD students
in Rennes, Paris and Nancy.
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This talk

An informal introduction to the Squirrel system:

• Preparing the ground for hands-on learning!

• How to formally model protocols and reason about their properties.

• Limited to trace properties: no equivalences.

I’m not going to talk about the theory, open problems, related works. . .
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Demo
Proving basic logical facts in Squirrel:

0-logic.sp

Squirrel uses standard proof assistant UI, and is inspired by Coq.
We prove formulas by organizing them in sequents:

ϕ1, . . . , ϕn ⊢ ψ reads as (
∧

i ϕi )⇒ ψ

The concrete notation is as follows, with identifiers for hypotheses:

H_1 : phi_1

...

H_n : phi_n

--------------

psi

However the Squirrel logic is not as standard as it seems.
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Modelling messages

Crypto is all about probabilistic, polynomial-time (PPTIME) computations.
Reasoning about these directly is intimidating.

Key idea #1

Let’s use logical terms to denote PPTIME bitstring computations.

Honest function symbols are interpreted as deterministic computations,
used to represent primitives, public constants, etc.
Notation: f(m), g(m, n), ok. . .
We assume builtins with standard semantics: equals, ifthenelse, etc.

Example

• if u = v then (if v = u then t1 else t2) else t3 and
if u = v then t1 else t3 always compute the same thing.

• gx might denote a DH public key associated to private key x .
To model x , we need probabilistic symbols.
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Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ≈ η.
Notation: n, r, k. . .

Names are used to model private keys, DH exponents, nonces, etc.

Example

• When m and n are distinct name symbols,
there is a negligible probability that m and n yield the same result.

• There is a negligible probability that t = n returns true,
provided that t represents a computation that cannot use n.

⇝ This is guaranteed if t contains neither n nor variables.
Variables x , y , z . . . represent arbitrary probabilistic computations.

Demo: 1-names.sp with the fresh tactic (also for indexed names)

7/21



Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ≈ η.
Notation: n, r, k. . .

Names are used to model private keys, DH exponents, nonces, etc.

Example

• When m and n are distinct name symbols,
there is a negligible probability that m and n yield the same result.

• There is a negligible probability that t = n returns true,
provided that t represents a computation that cannot use n.

⇝ This is guaranteed if t contains neither n nor variables.
Variables x , y , z . . . represent arbitrary probabilistic computations.

Demo: 1-names.sp with the fresh tactic (also for indexed names)

7/21



Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ≈ η.
Notation: n, r, k. . .

Names are used to model private keys, DH exponents, nonces, etc.

Key idea #2

A formula is valid when it is true with overwhelming probability.

Example

• The formula n ̸= m is valid.

• The formula t ̸= n is valid for any t containing neither n nor variables.

• However, the formula (∀x . x ̸= n) is not valid.

Demo: 1-names.sp with the fresh tactic (also for indexed names)

7/21



Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ≈ η.
Notation: n, r, k. . .

Names are used to model private keys, DH exponents, nonces, etc.

Key idea #2

A formula is valid when it is true with overwhelming probability.

Example

• The formula n ̸= m is valid.

• The formula t ̸= n is valid for any t containing neither n nor variables.

• However, the formula (∀x . x ̸= n) is not valid.

Demo: 1-names.sp with the fresh tactic (also for indexed names)

7/21



Modelling messages: names

Names

Interpreted as independent uniform random samplings of length ≈ η.
Notation: n, r, k. . .

Names are used to model private keys, DH exponents, nonces, etc.

Key idea #2

A formula is valid when it is true with overwhelming probability.

Example

• The formula n ̸= m is valid.

• The formula t ̸= n is valid for any t containing neither n nor variables.

• However, the formula (∀x . x ̸= n) is not valid.

Demo: 1-names.sp with the fresh tactic (also for indexed names)

7/21



Modelling messages: adversarial function symbols

Key idea #3

Use unspecified function symbols to model attacker computations.

Adversarial function symbols represent PPTIME computations
that cannot access honest randomness (names).
Notation: att(m1, . . . ,mk).

Example (Modelling a trace of signed DH protocol)

🙂 → 👿 : out1 = gx

👿 → 😊 : in2 = att(out1)

👿 ← 😊 : out2 = ⟨ gy, sign(⟨gy, in2⟩, sk😊) ⟩
🙂 ← 👿 : in3 = att’(out1, out2)
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Cryptographic reasoning: Diffie-Hellman

Key idea #4

Reformulate cryptographic assumptions as axiom schemes
by viewing terms as attacker computations.

Assume function symbols for a generator g and exponentiation,
interpreted in a cyclic group for which we assume CDH.

Example

• Can we have ga = ga×b?

No.

• Can we have ga×b = att(ga, gb)? No.

• The formula ga×b ̸= t is valid whenever. . .
t contains no variable, only contains a as ga, only contains b as gb.

Demo: 2-cdh.sp with the cdh tactic (also for indexed secrets)
Demo: 2.5-cdh-signed-dh.sp
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Cryptographic reasoning: signatures

Assume function symbols representing an EUF-CMA signature:

sign(m, k) : message verify(m, s, pub(k)) : bool

verify
(
m, sign(m, k), pub(k)

)
= true

The following axiom scheme is valid:

verify(m, s, pub(k))⇒
∨

m′∈S
m = m′

where S = { m′ | sign(m′, k) occurs in m, s}
and m, s are closed terms only containing k as pub(k) and sign( , k).

In practice, the tactic euf H allows to reason on H : verify(m,s,pk)

to deduce the above axioms and more.

Demo: 2.5-cdh-signed-dh.sp
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Cryptographic reasoning: hash functions

Assume h models a keyed hash functions.

If h is EUF-CMA secure, we have

u = h(v , k)⇒
∨
s∈S

s = v

where S = { s | h(s, k) occurs in u, v}
and u, v are variable-free terms where k only occurs as h( , k).

If h is collision-resistant, we have

h(u, k) = h(v , k)⇒ u = v

when u, v are variable-free terms where k only occurs as h( , k).

Existential unforgeability implies collision-resistance,
but the collision tactic is more convenient than euf.
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Further notes

What’s in the full local logic?

• Equalities, quantification over indices, boolean connectives, etc.
Can be seen as PPTIME computation because index is finite.

• Function types, polymorphism, higher-order quantification. . .
for modularity/abstraction in proofs. Recursive definitions (next).

Stanislas Riou (PhD student) works on automating the local logic using
SMT solvers.

What’s beyond the local logic?

The global logic is a classical logic over random vars with predicates for:

• overwhelming truth of a local formula,

• indistinguishability between sequences of messages,

• exact truth of a local formula, (non/bi)-deducibility, etc.

Cryptographic tactics are slowly being subsumed by bi-deduction and
cryptographic games thanks to the PhD work of Justine Sauvage.
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Systems of actions

A protocol is modelled by a set of actions.
Each action is identified by an indexed action symbol A(⃗i).

The semantics of action A(⃗i) is given by:

• a local formula describing the executability condition;

• a message term describing its output.

Both can use a special message term input@A(⃗i).

Example (Signed DH with several sessions)

A(i) = first action of Alice for session i :

• Executes if true.

• Outputs gx(i).

Demo: 3.5-signed-dh-many.sp (actions compiled from π-calculus
process)
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Traces of actions

A trace is a non-repeating sequence of actions
subject to protocol-specific conditions:

• A(1).B(7).A(1) is not a trace.

• A(1).B(7).A1(1) is a trace.

• A(1).B(7).A1(3) is not a trace.

• A(1).B(7).A2(1) is a trace.

• A(1).B(7).A1(1).A2(1) is not a trace.

• B(7).A(1).A1(1) is a trace.

A trace just indicates a tentative schedule for actions.
Depending on the interpretation of primitives and attackers,
it will execute with a certain probability.
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Modelling traces in the logic

We use terms of sort timestamp:

• happens(τ) means that τ is part of the trace

• init is the first timestamp that happens

• < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.
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Order (part of auto tactic)
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• < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Case analysis and induction (case and induction)

• ∀τ. happens(τ)⇒ τ = init ∨
∨

A∈A ∃i⃗ . τ = A(⃗i)

• (∀ τ. (∀τ ′. τ ′ < τ ⇒ ϕ[τ ′])⇒ ϕ[τ ])⇒ ∀τ. ϕ[τ ]
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Modelling traces in the logic

We use terms of sort timestamp:

• happens(τ) means that τ is part of the trace

• init is the first timestamp that happens

• < is a total order on timestamps that happen

Each trace yields a trace model, i.e.,
an interpretation for the action symbols, happens and <.

Signed DH specific axioms (used by smt but not auto)

• ∀i . happens(A1(i))⇒ A(i) < A1(i) (dependency)

• ∀i . ¬
(
happens(A1(i)) ∧ happens(A2(i))

)
(conflict)
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Macros

Given a trace we define1 recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@τ = ⟨output of action τ⟩ if init < τ

cond@τ = ⟨condition of action τ⟩ if init < τ

exec@init = true

exec@τ = exec@pred(τ) ∧ cond@τ if init < τ

frame@init = empty

exec@τ = ⟨ frame@pred(τ),
⟨ exec@τ,
if exec@τ then output@τ else empty ⟩⟩ if init < τ

input@τ = att(frame@τ) if init < τ

1Missing cases are not important.
17/21



Macros

Given a trace we define1 recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@τ = ⟨output of action τ⟩ if init < τ

cond@τ = ⟨condition of action τ⟩ if init < τ

exec@init = true

exec@τ = exec@pred(τ) ∧ cond@τ if init < τ

frame@init = empty

exec@τ = ⟨ frame@pred(τ),
⟨ exec@τ,
if exec@τ then output@τ else empty ⟩⟩ if init < τ

input@τ = att(frame@τ) if init < τ

1Missing cases are not important.
17/21



Macros

Given a trace we define1 recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@τ = ⟨output of action τ⟩ if init < τ

cond@τ = ⟨condition of action τ⟩ if init < τ

exec@init = true

exec@τ = exec@pred(τ) ∧ cond@τ if init < τ

frame@init = empty

exec@τ = ⟨ frame@pred(τ),
⟨ exec@τ,

if exec@τ then output@τ else empty ⟩⟩ if init < τ

input@τ = att(frame@τ) if init < τ

1Missing cases are not important.
17/21



Macros

Given a trace we define1 recursively several macros encoding
the attacker’s interaction with the protocol along that trace:

output@τ = ⟨output of action τ⟩ if init < τ

cond@τ = ⟨condition of action τ⟩ if init < τ

exec@init = true

exec@τ = exec@pred(τ) ∧ cond@τ if init < τ

frame@init = empty

exec@τ = ⟨ frame@pred(τ),
⟨ exec@τ,

if exec@τ then output@τ else empty ⟩⟩ if init < τ

input@τ = att(frame@τ) if init < τ

1Missing cases are not important.
17/21



Security properties for all traces

Additional macros reflect let-definitions used in processes.
For example Y′@A1(i) is the value of Y′ in that action.

Example (Agreement for 🙂)

∀i . cond@A1(i)⇒ ∃j . B(j) < A1(i) ∧
X@A(i) = X′@B(j) ∧
Y′@A1(i) = Y@B(j)

Demo: 3.5-signed-dh-many.sp
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Reasoning with recursive definitions

Constraining occurrences becomes more complex with macros.

Example (Freshness without macros nor indices)

t ̸= n is valid for any variable-free term t that does not contain n

Example (Freshness without macros)

t = n(⃗i)⇒
∨

n(j⃗)∈t i⃗ = j⃗ valid for any term t without message variables

Example (Freshness with macros)

t = n(⃗i) ⇒
∨

n(j⃗)∈t i⃗ = j⃗ ∨
∨

n(j⃗)∈A(k⃗) ∃k⃗ . A(k⃗) ≤ T ∧ i⃗ = j⃗

valid for any term t without message variables,
where n(j) ∈ A(k⃗) denotes occurrences in output or condition of A

Further refinements are possible and even necessary in practice.
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Further notes

Protocols with mutable state

Protocols with mutable memory cells are supported (using cell@τ macros).
The translation from processes to systems of actions, and its soundness,
is recent work notably involving Clément Herouard.

Polynomial security

A subtle discrepancy between security notions:

• We prove that, for each trace T , there is no attacker along T .

• We would like to prove that there is no attacker,
choosing the trace depending on η and previous messages.

This is the topic of Théo Vigneron’s ongoing PhD thesis.
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What’s next?

Hands on experience in practical sessions!

Learn some more on our website, with more tutorials and papers:

https://squirrel-prover.github.io/
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